CHAPTER 6 -- ENERGY

6.1) The f.b.d. shown to the right has been provided to identify all the forces acting on the body as it moves up the incline.
a.) To determine the work done by gravity as the body moves up the incline, there are two approaches. For your convenience, the force, velocity, and displacement are pictured below and also to the right.

Approach \#1: Using the definition of work and the angle between $m g$ and d as ϕ :

$$
\begin{aligned}
\mathrm{W}_{\text {grav }} & =\mathbf{F}_{\text {grav }} \cdot \mathbf{d} \\
& =(\mathrm{mg})(\mathrm{d}) \cos \phi \\
& =(\mathrm{mg})(\mathrm{d}) \cos \left(25^{\circ}+90^{\circ}\right) \\
& =(3 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(35 \mathrm{~m})(-.423) \\
& =-434.87 \text { joules. }
\end{aligned}
$$

Approach \#2: Using the component of $m g$ along the line of d :

$$
\begin{aligned}
\mathrm{W}_{\text {grav }} & =\mathbf{F}_{\text {grav }} \cdot \mathbf{d} \\
& = \pm\left(\mathrm{F}_{\mathrm{mg} \text { parallel to "d" }}\right)(\mathrm{d}) \\
& =-\left(\mathrm{mg} \sin 25^{\circ}\right)(\mathrm{d}) \\
& =-\left[(3 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(.423)\right](35 \mathrm{~m}) \\
& =-434.87 \text { joules. }
\end{aligned}
$$

Note: In this case, the force is OPPOSITE
the direction of the displacement which means the work must be negative. The negative sign in this case must be inserted manually. An alternative would be to notice that the angle ϕ between d and F^{\prime} s component along d 's line is 180° and determine the work quantity using:

$$
\begin{aligned}
\mathrm{W}_{\text {grav }} & =\mathbf{F}_{\text {grav }} \cdot \mathbf{d} \\
& =\left(\mathrm{F}_{\text {mg parallel to " "d }} \text {) }(\mathrm{d}) \cos \phi\right. \\
& =\left(\mathrm{mg} \sin 25^{\circ}\right)(\mathrm{d}) \cos 180^{\circ} .
\end{aligned}
$$

In doing so, the cosine function will give you the -1 automatically.
b.) The frictional force is equal to $\mu_{k} N$. To determine N, we need to use an f.b.d. and N.S.L. in the normal direction. The f.b.d. is shown to the right. N.S.L. yields:

$$
\begin{aligned}
\frac{\sum \mathrm{F}_{\mathrm{N}}}{} \mathrm{~N}-\mathrm{mg} \cos \theta & =0 \quad\left(\mathrm{as} \mathrm{a}_{\mathrm{N}}=0\right) \\
\Rightarrow \quad \mathrm{N} & =\mathrm{mg} \cos \theta \\
\Rightarrow \quad \mathrm{f}_{\mathrm{k}} & =\mu_{\mathrm{k}} \mathrm{~N} \\
& =\mu_{\mathrm{k}}(\mathrm{mg} \cos \theta) \\
& =(.3)(3 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 25^{\circ} \\
& =7.99 \mathrm{nts} .
\end{aligned}
$$

Friction is always opposite the direction of motion. The work friction does will be:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{f}} & =\mathbf{f}_{\mathrm{k}} \cdot \mathbf{d} \\
& =\left(f_{\mathrm{k}}\right)(\mathrm{d}) \cos 180^{\circ} \\
& =-\mathrm{f}_{\mathrm{k}} \mathrm{~d} \\
& =-(7.99 \mathrm{nts})(35 \mathrm{~m}) \\
& =-279.65 \text { joules. }
\end{aligned}
$$

c.) The angle between d and N is 90°. The cosine of 90° is zero. That means that the net work done by the normal force will be zero . . . ALWAYS!
d.) Kinetic energy is defined as (1/2)mv ${ }^{2}$. Using that expression we get:

$$
\begin{aligned}
\mathrm{KE}_{1} & =(1 / 2) \mathrm{mv}^{2} \\
& =.5(3 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})^{2} \\
& =6 \text { joules. }
\end{aligned}
$$

e.) The work/energy theorem states:

$$
\mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE} .
$$

For this case, that means:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{net}} \mathrm{~W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{mg}} \quad=\mathrm{KE}_{2} \quad-\quad \mathrm{KE}_{1} . \\
& \left(\mathrm{f}_{\mathrm{k}}\right)(\mathrm{d}) \cos 180^{\circ}+\mathrm{F}(\mathrm{~d}) \cos 0^{\circ}+(\mathrm{mg})(\mathrm{d}) \cos \phi=(1 / 2) \mathrm{mv}_{2}{ }^{2}-(1 / 2) \mathrm{mv}_{1}{ }^{2} \text {. }
\end{aligned}
$$

Plugging in the numbers, we get:

$$
\begin{aligned}
(-279.65 \mathrm{~J})+\mathrm{F}(35 \mathrm{~m})+(-434.87 \mathrm{~J}) & =(1 / 2)(3 \mathrm{~kg})(7 \mathrm{~m} / \mathrm{s})^{2}-(1 / 2)(3 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})^{2} \\
\Rightarrow \quad \mathrm{~F} & =22.34 \mathrm{nts} .
\end{aligned}
$$

6.2) The situation is shown in the sketch to the right. We need to derive a general algebraic expression for the force \boldsymbol{F} acting on the block, given the fact that that force is always oriented at an angle of 12° relative to the direction of motion.

Consider the f.b.d. (shown below) for the forces acting on the body when located at an arbitrary angle. As v is small and constant, both the centripetal acceleration (i.e., v^{2} / R)
positioning of forceF
when mass is at
an arbitrary angle θ
 and translational acceleration (i.e., $d v / d t$) are zero or approximately zero. Therefore, N.S.L. and the f.b.d. yields:

$$
\begin{aligned}
& \frac{\sum F_{x}:}{\mathrm{N}}-\mathrm{mg} \sin \theta+\mathrm{F} \sin 12^{\circ}=0 \quad\left(\text { as } a_{N}=0\right) \\
& \quad \Rightarrow \quad \mathrm{N}=(\mathrm{mg} \sin \theta)-\mathrm{F} \sin 12^{\circ} .
\end{aligned}
$$

Knowing the normal force, the frictional force follows as:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{k}} & =\mu_{\mathrm{k}} \mathrm{~N} \\
& =\mu_{\mathrm{k}}\left(\mathrm{mg} \sin \theta-\mathrm{F} \sin 12^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sum F_{\text {tang }}:}{} \quad-\mu_{k} N-m g \cos \theta+F \cos 12^{\circ}=0 \\
& \quad \Rightarrow \quad-\mu_{k}\left(m g \sin \theta-F \sin 12^{\circ}\right)-m g \cos \theta+F \cos 12^{\circ}=0 \\
& \quad \Rightarrow \quad F=\left[\mu_{k} m g \sin \theta+m g \cos \theta\right] /\left[\mu_{k} \sin 12^{\circ}+\cos 12^{\circ}\right] .
\end{aligned}
$$

Rewriting this with the constants in front of the variable expression, we get:

$$
F=\left[\frac{m g}{\cos 12^{\circ}+\mu_{\mathrm{k}} \sin 12^{\circ}}\right]\left[\mu_{\mathrm{k}} \sin \theta+\cos \theta\right] .
$$

Knowing the force in general terms, we can use $\int \mathbf{F} \cdot \mathrm{d} \mathbf{r}$ to determine the work the force does as the body rises from $\theta=20^{\circ}$ to $\theta=60^{\circ}$. Noting that:
--The angle ϕ between the line of \boldsymbol{F} and the line of $d \boldsymbol{r}$ is always 12°;
--The magnitude of a differential displacement $d \boldsymbol{r}$ along an arc equals $R \mathrm{~d} \theta$, where R is the radius of the arc and $\mathrm{d} \theta$ is the differential angle through which the motion occurs;
--And $\mu_{k}=.2, m=.5 \mathrm{~kg}$, and $R=.3$ meters, we can write:

$$
\begin{aligned}
\mathrm{W} & =\int \mathbf{F} \bullet \mathrm{d} \mathbf{r} \\
& =\int|\mathbf{F} \| \mathrm{d} \mathbf{r}| \cos \phi \\
& =\left[\frac{\mathrm{mg}}{\cos 12^{\circ}+\mu_{\mathrm{k}} \sin 12^{\circ}}\right] \int_{\theta=20^{\circ}}^{60^{\circ}}\left[\mu_{\mathrm{k}} \sin \theta+\cos \theta\right][\mathrm{Rd} \theta] \cos 12^{\circ} \\
& =\left[\frac{\mathrm{mgR} \cos 12^{\circ}}{\cos 12^{\circ}+\mu_{\mathrm{k}} \sin 12^{\circ}}\right]\left[\int_{\theta=20^{\circ}}^{60^{\circ}}\left[\mu_{\mathrm{k}} \sin \theta\right] \mathrm{d} \theta+\int_{\theta=20^{\circ}}^{60^{\circ}}[\cos \theta] \mathrm{d} \theta\right] \\
& =\left[\frac{\mathrm{mgR} \cos 12^{\circ}}{\cos 12^{\circ}+\mu_{\mathrm{k}} \sin 12^{\circ}}\right]\left[\left[\mu_{\mathrm{k}}(-\cos \theta)\right]_{\theta=20^{\circ}}^{60^{\circ}}+[(\sin \theta)]_{\theta=20^{\circ}}^{60^{\circ}}\right] \\
& =\left[\frac{(.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(.3) \cos 12^{\circ}}{\cos 12^{\circ}+(.2) \sin 12^{\circ}}\right]\left[\left[(.2)\left(-\left[\cos 60^{\circ}-\cos 20^{\circ}\right]\right)\right]+\left[\left(\sin 60^{\circ}-\sin 20^{\circ}\right)\right]\right] \\
& =.86 \text { joules. }
\end{aligned}
$$

6.3) All the energy is stored in spring potential energy. Using the potential energy function for a spring we get:

$$
\begin{aligned}
\mathrm{U}_{\mathrm{sp}} & =(1 / 2) \mathrm{kx}^{2} \\
& =.5(120 \mathrm{nt} / \mathrm{m})(.2 \mathrm{~m})^{2} \\
& =2.4 \text { joules. }
\end{aligned}
$$

6.4) The relationship between the field's potential energy function (assumed known) and its associated force function is:

$$
\begin{aligned}
\mathbf{F}(x, y, z) & =-\vec{\nabla} U(x, y, z) \\
& =-\left(\frac{\partial(U)}{\partial x} \mathbf{i}+\frac{\partial(U)}{\partial y} \mathbf{j}+\frac{\partial(U)}{\partial z} \mathbf{k}\right) \\
& =-\left(\frac{\partial\left(-\frac{k_{1}}{x} e^{-k y}\right)}{\partial x} \mathbf{i}+\frac{\partial\left(-\frac{k_{1}}{x} e^{-k y}\right)}{\partial y} \mathbf{j}+\frac{\partial\left(-\frac{k_{1}}{x} e^{-k y}\right)}{\partial z} \mathbf{k}\right) \\
& =-\left[\left(\frac{k_{1}}{x^{2}}\right) e^{-k y} \mathbf{i}+\frac{k_{1}}{x}\left(k e^{-k y}\right) \mathbf{j}\right]
\end{aligned}
$$

6.5) Looking at the function, the force will equal zero when $y=0$ and when $\ln x=3$ (i.e., when $x=20.086$). Using this and our force/potential energy relationship, we get:

$$
\mathrm{U}(\mathrm{x}, \mathrm{y})-\mathrm{U}(\mathrm{x}=20.086, \mathrm{y}=0)=-\int \mathbf{F} \cdot \mathrm{d} \mathbf{r} .
$$

Observing that $U(x=20.086, y=0)=0$ and that $\mathrm{d} \mathbf{r}=\mathrm{dx} \mathbf{i}+\mathrm{dyj}+\mathrm{dzk}$, and realizing that if this was a test question, 90% of the points would be wrapped up in the first two lines of what follows (i.e., the layout), we can write this as:

$$
\begin{aligned}
U(x, y) & =-\int_{x=20.086, y=0}^{x, y}\left[\left(k_{1} \ln (x)-3\right) \mathbf{i}-\left(k_{2} y^{2}\right) \mathbf{j}\right] \bullet[d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}] \\
& =-\int_{x=20.086, y=0}^{x, y}\left[\left(k_{1} \ln (x)-3\right) d x-\left(k_{2} y^{2}\right) d y\right] \\
& =-\int_{x=20.086}^{x}\left[k_{1} \ln (x)-3\right] d x+\int_{y=0}^{y}\left[k_{2} y^{2}\right] d y \\
& =-\int_{x=20.086}^{x}\left[k_{1} \ln (x)\right] d x+\int_{x=20.086}^{x}[3] d x+\int_{y=0}^{y}\left[k_{2} y^{2}\right] d y .
\end{aligned}
$$

Setting the k terms equal to one and noting that $\int(\ln x) d x=(x) \ln x-x$, we can evaluate these integrals as:

$$
\begin{aligned}
U(x, y) & =-[x \ln x-x]_{x=20.086}^{x}-[-3 x]_{x=20.086}^{x}+\left[\frac{y^{3}}{3}\right]_{y=0}^{y} \\
& =-[(x \ln x-x)-(20.086 \ln 20.086-20.086)]-[([-3 x])-([-3(20.086)])]+\left[\left(\frac{y^{3}}{3}\right)-\left(\frac{(0)^{3}}{3}\right)\right] \\
& =-x \ln x+4 x+\frac{y^{3}}{3}-20.086
\end{aligned}
$$

Note: A perfectly legitimate follow-up question to this problem might be: How much work does the force field do as the body goes from $x=1, y=2$ to $x=4, y$ $=-1$. The answer is:

$$
\begin{aligned}
\mathrm{W}_{\text {cons.forc }} & =-\Delta \mathrm{U} \\
& =-\left[\quad \mathrm{U}_{\mathrm{pt} 2}\right. \\
& \left.\left.=-\left[\left[-4 \ln 4+4(4)+(-1)^{3} / 3-20.09\right)\right]-\left[-\ln (1)+4(1)+(2)^{3} / 3-20.09\right)\right]\right] \\
& =-3.45 \text { joules. }
\end{aligned}
$$

6.6)

a.) We could use the work/energy theorem on this problem, but the modified conservation of energy equation is so much easier to use that we will use it here. Noting that the tension in the line is always perpendicular to the motion (i.e., the work done due to tension is zero), we can write:

$$
\begin{aligned}
& \begin{array}{rlll}
\mathrm{KE}_{1}+ & \sum \mathrm{U}_{1} & +\sum \mathrm{W}_{\text {extra }} & =\mathrm{KE}_{2}+ \\
(1 / 2) \mathrm{mv}_{1}{ }^{2}+ & \mathrm{mgy}_{1} & +\mathrm{Td} \cos 90^{\circ} & =(1 / 2) \mathrm{mv}_{2}{ }^{2}+
\end{array} \begin{array}{l}
\sum \mathrm{U}_{2} \\
\mathrm{mgy}_{2}
\end{array} \\
& \text { (0) } \quad+\mathrm{m}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})+(0) \quad=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\mathrm{m}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~m}) \text {. }
\end{aligned}
$$

Being careful not to confuse mass terms denoted by m and the units of length (meters, abbreviated m), we can cancel the mass terms and get:

$$
\mathrm{v}_{2}=11.71 \mathrm{~m} / \mathrm{s}
$$

b.) At the bottom of the arc, Tarzan's velocity can again be found using the modified conservation of energy expression (we need that velocity
because he is moving under the influence of a center-seeking force--a velocity driven function--at that point). Using the approach:

$$
\begin{aligned}
\mathrm{KE}_{1}+\sum \sum \mathrm{U}_{1}+\sum \mathrm{W}_{\text {extra }} & =\mathrm{KE}_{\mathrm{bot}}+\sum \sum \mathrm{U}_{\mathrm{bot}} \\
(1 / 2) \mathrm{mv}_{1}^{2}+\quad \mathrm{mgy}_{1}+ & +(0) \\
(0) \quad+\mathrm{m}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})+ & (0) \\
(0) \mathrm{mv}_{\mathrm{bot}}^{2}+ & \mathrm{mgy}_{2}
\end{aligned}
$$

Canceling the mass terms yields:

$$
\mathrm{v}_{\mathrm{bot}}=14 \mathrm{~m} / \mathrm{s} .
$$

There is a tension force upward and gravity downward when Tarzan is at the bottom of the arc (you might want to draw an f.b.d. to be complete). N.S.L. implies:

$$
\begin{aligned}
& \underline{F_{c}}: \\
& \mathrm{T}-\mathrm{mg}=\mathrm{ma}{ }_{\mathrm{c}} \\
& =\mathrm{m}\left(\mathrm{v}^{2} / \mathrm{R}\right) \quad \text { (as } \mathrm{a}_{\mathrm{c}} \text { is a centripetal acc.) } \\
& \Rightarrow \quad \mathrm{T}=\mathrm{mg}+\mathrm{mv}^{2} / \mathrm{R} \\
& =(80 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)+(80 \mathrm{~kg})(14 \mathrm{~m} / \mathrm{s})^{2} /(15 \mathrm{~m}) \\
& =1829.3 \text { nts } \text {. }
\end{aligned}
$$

c.) At the molehill, Tarzan's velocity is $11.71 \mathrm{~m} / \mathrm{s}$. An f.b.d. for that situation is shown below-left. The only thing that is really tricky about the problem is determining the angle θ. The diagram below-right will do that.

With θ, N.S.L. yields:

$$
\begin{aligned}
& \underline{\sum F_{c}:} \\
& \begin{aligned}
\mathrm{T}-\mathrm{mg} \cos \theta & =m a_{c} \\
& =m\left(v^{2} / \mathrm{R}\right) .
\end{aligned}
\end{aligned}
$$

As a_{c} is a centripetal acceleration:

$$
\begin{aligned}
\Rightarrow \quad \mathrm{T} & =\mathrm{mg} \cos \theta+\mathrm{mv}^{2} / \mathrm{R} \\
& =(80 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 / 15)+(80 \mathrm{~kg})(11.71 \mathrm{~m} / \mathrm{s})^{2} /(15 \mathrm{~m}) \\
& =1358.5 \mathrm{nts} .
\end{aligned}
$$

6.7) Both gravity and friction do work as the body slides down the incline. Using the modified conservation of energy equation, we get:

$$
\begin{gathered}
\mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\sum \mathrm{W}_{\text {extra }}=\mathrm{KE}_{2}+\sum \mathrm{U}_{2} \\
(1 / 2) \mathrm{mv}_{1}{ }^{2}+\mathrm{mgy}_{1}+\quad\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right)=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\mathrm{mgy}_{2} \\
(0)+\mathrm{mgR}^{2} \quad\left(\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right)=(0)+(0) \\
\Rightarrow \mathrm{f}_{\mathrm{k}}=\mathrm{mgR} / \mathrm{d} .
\end{gathered}
$$

In this case, d is the total distance over which the frictional force acts. That is, the 18 meters along the horizontal surface AND the quarter circumference down the curved incline (that will equal (1/4)(2 $2 \pi R)$). That total distance is:

$$
\begin{aligned}
\mathrm{d} & =18+.5 \pi \mathrm{R} \\
& =18+.5 \pi(2 \mathrm{~m}) \\
& =21.14 \mathrm{~m} .
\end{aligned}
$$

Plugging this into our expression, we get:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{k}} & =\mathrm{mgR} / \mathrm{d} \\
& =(12 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~m}) /(21.14) \\
& =11.13 \text { nts. }
\end{aligned}
$$

6.8) The fact that the angle is 85° makes no difference, assuming the velocity is great enough to allow the dart to make it to the monkey. What is important is that the dart has enough energy in the beginning to effect a pierce at the end. Using conservation of energy:

$$
\begin{aligned}
\mathrm{KE}_{1}+\mathrm{SU}_{1}+\mathrm{SW}_{\mathrm{ext}} & =\mathrm{KE}_{2}+\mathrm{SU}_{2} \\
(1 / 2) \mathrm{mv}_{1}^{2}+(0)+(0) & =(1 / 2) \mathrm{mv}_{2}^{2}+\mathrm{mgh}_{2} .
\end{aligned}
$$

Dividing out the masses and multiplying by 2 yields:

$$
\begin{aligned}
\mathrm{v}_{1} & =\left[\mathrm{v}_{2}^{2}+2 \mathrm{gh}_{2}\right]^{1 / 2} \\
& =\left[(4 \mathrm{~m} / \mathrm{s})^{2}+2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(35 \mathrm{~m})\right]^{1 / 2} \\
& =26.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6.9) Assuming an average frictional force of 27 newtons:
a.) Let the potential energy equals zero level be the ground. That means that below-ground level, the h in $m g h$ will be negative. Using conservation of energy:

$$
\begin{gathered}
\mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\sum \mathrm{W}_{\mathrm{ext}}=\mathrm{KE}_{2}+\sum \mathrm{U}_{2} \\
(1 / 2) \mathrm{mv}_{1}^{2}+(0)+\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right)=(1 / 2) \mathrm{mv}_{\mathrm{C}}^{2}+\mathrm{mgh}_{\mathrm{C}} .
\end{gathered}
$$

or
$.5(1800 \mathrm{~kg})(38 \mathrm{~m} / \mathrm{s})^{2}-(27 \mathrm{nts})(130 \mathrm{~m})=.5(1800 \mathrm{~kg}) \mathrm{v}_{\mathrm{C}}{ }^{2}+(1800 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-15 \mathrm{~m})$

$$
\Rightarrow \quad \mathrm{v}_{\mathrm{C}}=41.64 \mathrm{~m} / \mathrm{s} .
$$

b.) The only thing that is tricky about this is finding the total distance d traveled (we need that to determine the amount of work friction does). Noting that the distance traveled while moving through the loop is $2 \pi R$, conservation of energy yields:

$$
\begin{aligned}
& \mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\quad \sum \mathrm{W}_{\mathrm{ext}} \quad=\mathrm{KE}_{2}+\sum \mathrm{U}_{2} \\
& (1 / 2) \mathrm{mv}_{1}^{2}+(0)+\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}_{\mathrm{tot}}\right) \quad=(0)+\mathrm{mgh} \text { ramp } \\
& (1 / 2) \mathrm{mv}_{1}{ }^{2}+0 \quad-\mathrm{f}_{\mathrm{k}}(70+60+40+2 \pi(20)+\mathrm{d})=0+\mathrm{mgd} \sin \theta \\
& .5(1800 \mathrm{~kg})(38 \mathrm{~m} / \mathrm{s})^{2}-[(27 \mathrm{nts})(295.7 \mathrm{~m})+27 \mathrm{~d}]=(1800)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{d} \sin 30^{\circ} \\
& \Rightarrow \quad \mathrm{d}=146 \mathrm{~m} \text {. }
\end{aligned}
$$

c.) Along with the conservation of energy, this problem requires N.S.L. We know that at the top of the arc, the vertical forces are centripetal at the
velocity required AND the normal force goes to zero. From the conservation of energy we get:

$$
\begin{array}{ccccc}
\mathrm{KE}_{1}+\sum \mathrm{U}_{1}+ & \sum \mathrm{W}_{\mathrm{ext}} & = & \mathrm{KE}_{2} & + \\
(1 / 2) \mathrm{mv}_{1}{ }^{2}+(0)+ & \left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}_{\mathrm{top}}\right) & = & \sum \mathrm{U}_{2} \\
(1 / 2) \mathrm{mv}_{1}{ }^{2}+0 & 0 & -\mathrm{f}_{\mathrm{k}}[70+60+40+(2 \pi \mathrm{R}) / 2] & = & (1 / 2) \mathrm{mv}_{\mathrm{top}}{ }_{2}^{2}+
\end{array}
$$

Using N.S.L., we get:

$$
\begin{aligned}
-\mathrm{N}-\mathrm{mg} & =-\mathrm{ma} \mathrm{c} \\
& =-\mathrm{m}\left(\mathrm{v}_{\mathrm{top}}^{2} / \mathrm{R}\right)
\end{aligned}
$$

When the velocity is correct, N goes to zero and:

$$
\mathrm{v}_{\mathrm{top}}^{2}=\mathrm{gR} .
$$

Substituting that into our expression, we get:

$$
\begin{aligned}
\mathrm{v}_{1}^{2} & =\mathrm{v}_{\mathrm{top}}^{2}+791 \\
& =\mathrm{gR}+791 \\
& =\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(20 \mathrm{~m})+791 \\
\Rightarrow \quad \mathrm{v}_{1} & =31.42 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6.10)

a.) Assuming the spring is depressed a distance x, let's define the gravitational potential energy equals zero level to be at that point (i.e., where the spring is depressed a distance x). As such, the crate travels a distance $d+x$, where d is the crate's initial distance from the bumper. The modified conservation of energy theorem implies:

$$
\begin{aligned}
& \mathrm{KE}_{1}+\quad \sum \mathrm{U}_{1} \quad+\sum \mathrm{W}_{\mathrm{ext}}=\mathrm{KE}_{2}+\quad \sum \mathrm{U}_{2} \\
& \text { (0) }+\left[\quad \mathrm{U}_{\mathrm{grav}, 1}+\mathrm{U}_{\mathrm{sp}, 1}\right]+\sum \mathrm{W}_{\mathrm{ext}}=(0)+\left[\mathrm{U}_{\mathrm{grav}, 2}+\mathrm{U}_{\mathrm{sp}, 2}\right] \\
& \text { (0) }+[\mathrm{mg}(\mathrm{~d}+\mathrm{x}) \sin \theta+(0)]-\mathrm{f}_{\mathrm{k}}(\mathrm{~d}+\mathrm{x})=(0)+\left[\quad(0) \quad+.5 \mathrm{kx}^{2}\right] \\
& \Rightarrow \quad m g(d+x) \sin \theta-f_{k}(d+x)=.5 \mathrm{kx}^{2} \\
& \Rightarrow \quad(60 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3+\mathrm{x}) \sin 55^{\circ}-(100 \mathrm{nt})(3+\mathrm{x})=.5(20,000) \mathrm{x}^{2} \text {. }
\end{aligned}
$$

Rearranging:

$$
10,000 x^{2}-381.7 x-1145=0
$$

Using the Quadratic Formula, we get $x=.36$ meters.
b.) In this section, we really are not interested in x--we want to know how much energy the block has just before hitting the spring, and how much energy the block loses by the time it leaves the spring. In other words, this is really a brand new problem. As such, let's redefine the zero gravitational potential energy level to be at the point when the block is just about to come into contact with the spring. If that be the
 case, the conservation of energy allows us to determine the energy of the block just before striking the spring at Point 3 :

$$
\begin{aligned}
& \mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\sum \mathrm{W}_{\text {ext }}=\mathrm{KE}_{3}+\sum \mathrm{U}_{3} \\
& (0)+\mathrm{mg} \operatorname{d} \sin \theta-\mathrm{f}_{\mathrm{k}} \mathrm{~d}=\mathrm{KE}_{3}+(0) \\
& \Rightarrow \quad \mathrm{KE}_{3}
\end{aligned} \begin{aligned}
& =\operatorname{mgd} \sin \theta-\mathrm{f}_{\mathrm{k}} \mathrm{~d} \\
& =(60 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(3 \sin 55^{\circ}\right)-(100 \mathrm{nt})(3 \mathrm{~m}) \\
& =1144.98 \text { joules. }
\end{aligned}
$$

If $3 / 4$ of the kinetic energy is lost, then $1 / 4$ is left. That means the block has kinetic energy $(1 / 4)(1144.98 j)=286.2$ joules as it starts back up the incline. If we let L be the distance the block travels up the incline to rest, and if we remember that the $U=0$ level is at the spring's end, we have:

$$
\begin{gathered}
\mathrm{KE}_{4}+\sum \mathrm{U}_{4}+\sum \mathrm{W}_{\mathrm{ext}}=\mathrm{KE}_{5}+\quad \sum \mathrm{U}_{5} \\
(286.2 \mathrm{j})+(0) \quad-(100 \mathrm{nt}) \mathrm{L}=(0)+(60 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\mathrm{L} \sin 55^{\circ}\right) \\
\Rightarrow \quad \mathrm{L}=.49 \text { meters } .
\end{gathered}
$$

6.11) Using the potential energy function provided, conservation of energy implies:

$$
\begin{aligned}
& \mathrm{KE}_{1}+\quad \sum \mathrm{U}_{1}+\sum \mathrm{W}_{\mathrm{ext}}=\mathrm{KE}_{2}+\quad \sum \mathrm{U}_{2} \\
& (1 / 2) \mathrm{m}_{\mathrm{s}} \mathrm{v}_{1}^{2}+\left[-\mathrm{Gm}_{\mathrm{e}} \mathrm{~m}_{\mathrm{s}} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{d}_{1}\right)\right]+(0)=(1 / 2) \mathrm{m}_{\mathrm{s}} \mathrm{v}_{2}^{2}+\left[-\mathrm{Gm}_{\mathrm{e}} \mathrm{~m}_{\mathrm{s}} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{d}_{2}\right)\right] .
\end{aligned}
$$

Noticing that the m_{s} 's cancel out, we can write:

$$
\begin{aligned}
.5(1500 \mathrm{~m} / \mathrm{s})^{2}+\left[-\left(6.67 \mathrm{x} 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right) /\left(6.37 \times 10^{6} \mathrm{~m}+1.2 \times 10^{5} \mathrm{~m}\right)\right]= \\
.5 \mathrm{v}_{2}^{2}+\left[-\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right) /\left(6.37 \times 10^{6} \mathrm{~m}+.9 \mathrm{x} 10^{5} \mathrm{~m}\right)\right]
\end{aligned}
$$

SOLVING yields $v_{2}=1680 \mathrm{~m} / \mathrm{s}$.
6.12) The trick to this problem is in recognizing the fact that at the top of its arc, the mass is executing centripetal acceleration where tension is acting as one of the centripetal forces in the system. Using N.S.L. and remembering that the radius of the mass's motion is $L / 3$, we get:

$$
\begin{aligned}
& \underline{\sum \mathrm{F}_{\mathrm{c}}:} \\
&-\mathrm{T}-\mathrm{mg}=-\mathrm{ma}_{\mathrm{c}} \\
&=-\mathrm{m}\left(\mathrm{v}_{\mathrm{top}}^{2} 2 / \mathrm{R}\right) \\
&=-\mathrm{m}\left(\mathrm{v}_{\mathrm{top}}^{2} /(\mathrm{L} / 3)\right) \\
& \Rightarrow \mathrm{T}=(3 \mathrm{~m} / \mathrm{L})\left(\mathrm{v}_{\mathrm{top}}\right)^{2}-\mathrm{mg} .
\end{aligned}
$$

To solve this expression for T, we need the velocity of the mass at the top of its flight.

Enter the modified conservation of energy approach--an approach designed specifically to determine velocities when conservative force fields are doing work on bodies. If we take the potential energy equal to $Z E R O$ point to be at the bottom of the arc, the information given in the sketch on the next page tells it all.

Using our information, we get:

$$
\begin{gathered}
\mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\quad \sum \mathrm{W}_{\mathrm{ext}}=\mathrm{KE}_{2}+\sum \mathrm{U}_{2} \\
(0)+\mathrm{mgL}+[-(.1)(\mathrm{mgL})]=(1 / 2) \mathrm{mv}_{\mathrm{top}}^{2}+\mathrm{mg}(2 \mathrm{~L} / 3) \\
\Rightarrow \quad \mathrm{v}_{\mathrm{top}}=[.46 \mathrm{gL}]^{1 / 2} .
\end{gathered}
$$

Plugging this into our tension expression yields:

$$
\begin{aligned}
\mathrm{T} & =(3 \mathrm{~m} / \mathrm{L})\left(\mathrm{v}_{\mathrm{top}}\right)^{2}-\mathrm{mg} \\
& =(3 \mathrm{~m} / \mathrm{L})\left([.46 \mathrm{gL}]^{1 / 2}\right)^{2}-\mathrm{mg} \\
& =1.38 \mathrm{mg}-\mathrm{mg} \\
& =.38 \mathrm{mg} .
\end{aligned}
$$

